Диапазон измерения коэффициента корреляции. Как рассчитать линейный коэффициент корреляции

В научных исследованиях часто возникает необходимость в нахождении связи между результативными и факторными переменными (урожайностью какой-либо культуры и количеством осадков, ростом и весом человека в однородных группах по полу и возрасту, частотой пульса и температурой тела и т.д.).

Вторые представляют собой признаки, способствующие изменению таковых, связанных с ними (первыми).

Понятие о корреляционном анализе

Существует множество Исходя из вышеизложенного, можно сказать, что корреляционный анализ — это метод, применяющийся с целью проверки гипотезы о статистической значимости двух и более переменных, если исследователь их может измерять, но не изменять.

Есть и другие определения рассматриваемого понятия. Корреляционный анализ — это метод обработки заключающийся в изучении коэффициентов корреляции между переменными. При этом сравниваются коэффициенты корреляции между одной парой или множеством пар признаков, для установления между ними статистических взаимосвязей. Корреляционный анализ — это метод по изучению статистической зависимости между случайными величинами с необязательным наличием строгого функционального характера, при которой динамика одной случайной величины приводит к динамике математического ожидания другой.

Понятие о ложности корреляции

При проведении корреляционного анализа необходимо учитывать, что его можно провести по отношению к любой совокупности признаков, зачастую абсурдных по отношению друг к другу. Порой они не имеют никакой причинной связи друг с другом.

В этом случае говорят о ложной корреляции.

Задачи корреляционного анализа

Исходя из приведенных выше определений, можно сформулировать следующие задачи описываемого метода: получить информацию об одной из искомых переменных с помощью другой; определить тесноту связи между исследуемыми переменными.

Корреляционный анализ предполагает определение зависимости между изучаемыми признаками, в связи с чем задачи корреляционного анализа можно дополнить следующими:

  • выявление факторов, оказывающих наибольшее влияние на результативный признак;
  • выявление неизученных ранее причин связей;
  • построение корреляционной модели с ее параметрическим анализом;
  • исследование значимости параметров связи и их интервальная оценка.

Связь корреляционного анализа с регрессионным

Метод корреляционного анализа часто не ограничивается нахождением тесноты связи между исследуемыми величинами. Иногда он дополняется составлением уравнений регрессии, которые получают с помощью одноименного анализа, и представляющих собой описание корреляционной зависимости между результирующим и факторным (факторными) признаком (признаками). Этот метод в совокупности с рассматриваемым анализом составляет метод

Условия использования метода

Результативные факторы зависят от одного до нескольких факторов. Метод корреляционного анализа может применяться в том случае, если имеется большое количество наблюдений о величине результативных и факторных показателей (факторов), при этом исследуемые факторы должны быть количественными и отражаться в конкретных источниках. Первое может определяться нормальным законом — в этом случае результатом корреляционного анализа выступают коэффициенты корреляции Пирсона, либо, в случае, если признаки не подчиняются этому закону, используется коэффициент ранговой корреляции Спирмена.

Правила отбора факторов корреляционного анализа

При применении данного метода необходимо определиться с факторами, оказывающими влияние на результативные показатели. Их отбирают с учетом того, что между показателями должны присутствовать причинно-следственные связи. В случае создания многофакторной корреляционной модели отбирают те из них, которые оказывают существенное влияние на результирующий показатель, при этом взаимозависимые факторы с коэффициентом парной корреляции более 0,85 в корреляционную модель предпочтительно не включать, как и такие, у которых связь с результативным параметром носит непрямолинейный или функциональный характер.

Отображение результатов

Результаты корреляционного анализа могут быть представлены в текстовом и графическом видах. В первом случае они представляются как коэффициент корреляции, во втором — в виде диаграммы разброса.

При отсутствии корреляции между параметрами точки на диаграмме расположены хаотично, средняя степень связи характеризуется большей степенью упорядоченности и характеризуется более-менее равномерной удаленностью нанесенных отметок от медианы. Сильная связь стремится к прямой и при r=1 точечный график представляет собой ровную линию. Обратная корреляция отличается направленностью графика из левого верхнего в нижний правый, прямая — из нижнего левого в верхний правый угол.

Трехмерное представление диаграммы разброса (рассеивания)

Помимо традиционного 2D-представления диаграммы разброса в настоящее время используется 3D-отображение графического представления корреляционного анализа.

Также используется матрица диаграммы рассеивания, которая отображает все парные графики на одном рисунке в матричном формате. Для n переменных матрица содержит n строк и n столбцов. Диаграмма, расположенная на пересечении i-ой строки и j-ого столбца, представляет собой график переменных Xi по сравнению с Xj. Таким образом, каждая строка и столбец являются одним измерением, отдельная ячейка отображает диаграмму рассеивания двух измерений.

Оценка тесноты связи

Теснота корреляционной связи определяется по коэффициенту корреляции (r): сильная — r = ±0,7 до ±1, средняя — r = ±0,3 до ±0,699, слабая — r = 0 до ±0,299. Данная классификация не является строгой. На рисунке показана несколько иная схема.

Пример применения метода корреляционного анализа

В Великобритании было предпринято любопытное исследование. Оно посвящено связи курения с раком легких, и проводилось путем корреляционного анализа. Это наблюдение представлено ниже.

Исходные данные для корреляционного анализа

Профессиональная группа

смертность

Фермеры, лесники и рыбаки

Шахтеры и работники карьеров

Производители газа, кокса и химических веществ

Изготовители стекла и керамики

Работники печей, кузнечных, литейных и прокатных станов

Работники электротехники и электроники

Инженерные и смежные профессии

Деревообрабатывающие производства

Кожевенники

Текстильные рабочие

Изготовители рабочей одежды

Работники пищевой, питьевой и табачной промышленности

Производители бумаги и печати

Производители других продуктов

Строители

Художники и декораторы

Водители стационарных двигателей, кранов и т. д.

Рабочие, не включенные в другие места

Работники транспорта и связи

Складские рабочие, кладовщики, упаковщики и работники разливочных машин

Канцелярские работники

Продавцы

Работники службы спорта и отдыха

Администраторы и менеджеры

Профессионалы, технические работники и художники

Начинаем корреляционный анализ. Решение лучше начинать для наглядности с графического метода, для чего построим диаграмму рассеивания (разброса).

Она демонстрирует прямую связь. Однако на основании только графического метода сделать однозначный вывод сложно. Поэтому продолжим выполнять корреляционный анализ. Пример расчета коэффициента корреляции представлен ниже.

С помощью программных средств (на примере MS Excel будет описано далее) определяем коэффициент корреляции, который составляет 0,716, что означает сильную связь между исследуемыми параметрами. Определим статистическую достоверность полученного значения по соответствующей таблице, для чего нам нужно вычесть из 25 пар значений 2, в результате чего получим 23 и по этой строке в таблице найдем r критическое для p=0,01 (поскольку это медицинские данные, здесь используется более строгая зависимость, в остальных случаях достаточно p=0,05), которое составляет 0,51 для данного корреляционного анализа. Пример продемонстрировал, что r расчетное больше r критического, значение коэффициента корреляции считается статистически достоверным.

Использование ПО при проведении корреляционного анализа

Описываемый вид статистической обработки данных может осуществляться с помощью программного обеспечения, в частности, MS Excel. Корреляционный предполагает вычисление следующих парамет-ров с использованием функций:

1. Коэффициент корреляции определяется с помощью функции КОРРЕЛ (массив1; массив2). Массив1,2 — ячейка интервала значений результативных и факторных переменных.

Линейный коэффициент корреляции также называется коэффициентом корреляции Пирсона, в связи с чем, начиная с Excel 2007, можно использовать функцию с теми же массивами.

Графическое отображение корреляционного анализа в Excel производится с помощью панели «Диаграммы» с выбором «Точечная диаграмма».

После указания исходных данных получаем график.

2. Оценка значимости коэффициента парной корреляции с использованием t-критерия Стьюдента. Рассчитанное значение t-критерия сравнивается с табличной (критической) величиной данного показателя из соответствующей таблицы значений рассматриваемого параметра с учетом заданного уровня значимости и числа степеней свободы. Эта оценка осуществляется с использованием функции СТЬЮДРАСПОБР (вероятность; степени_свободы).

3. Матрица коэффициентов парной корреляции. Анализ осуществляется с помощью средства «Анализ данных», в котором выбирается «Корреляция». Статистическую оценку коэффициентов парной корреляции осуществляют при сравнении его абсолютной величины с табличным (критическим) значением. При превышении расчетного коэффициента парной корреляции над таковым критическим можно говорить, с учетом заданной степени вероятности, что нулевая гипотеза о значимости линейной связи не отвергается.

В заключение

Использование в научных исследованиях метода корреляционного анализа позволяет определить связь между различными факторами и результативными показателями. При этом необходимо учитывать, что высокий коэффициент корреляции можно получить и из абсурдной пары или множества данных, в связи с чем данный вид анализа нужно осуществлять на достаточно большом массиве данных.

После получения расчетного значения r его желательно сравнить с r критическим для подтверждения статистической достоверности определенной величины. Корреляционный анализ может осуществляться вручную с использованием формул, либо с помощью программных средств, в частности MS Excel. Здесь же можно построить диаграмму разброса (рассеивания) с целью наглядного представления о связи между изучаемыми факторами корреляционного анализа и результативным признаком.

При корреляционной связи одной и той же величине одного признака соответствуют разные величины другого. Например: между ростом и весом имеется корреляционная связь, между заболеваемостью злокачественными новообразованиямии возрастом и т.д.

Существует 2 метода вычисления коэффициента корреляции: метод квадратов(Пирсона), метод рангов (Спирмена).

Наиболее точным является метод квадратов (Пирсона), при котором коэффициент корреляции определяется по формуле: , где

r ху ― коэффициент корреляции между статистическим рядом X и Y.

d х ― отклонение каждого из чисел статистического ряда X от своей средней арифметической.

d у ― отклонение каждого из чисел статистического ряда Y от своей средней арифметической.

В зависимости от силы связи и ее направления коэффициент корреляции может находиться в пределах от 0 до 1 (-1). Коэффициент корреляции, равный 0, говорит о полном отсутствии связи. Чем ближе уровень коэффициента корреляции к 1 или (-1), тем соответственно больше, теснее измеряемая им прямая или обратная связь. При коэффициенте корреляции равном 1 или (-1) связь полная, функциональная.

Схема оценки силы корреляционной связи по коэффициенту корреляции

Сила связи

Величина коэффициента корреляции при наличии

прямой связи (+)

обратной связи (-)

Связь отсутствует

Связь малая (слабая)

от 0 до +0,29

от 0 до –0,29

Связь средняя (умеренная)

от +0,3 до +0,69

от –0,3 до –0,69

Связь большая (сильная)

от +0,7 до +0,99

от –0,7 до –0,99

Связь полная

(функциональная)

Для вычисления коэффициента корреляции по методу квадратов составляется таблица из 7 колонок. Разберем процесс вычисления на примере:

ОПРЕДЕЛИТЬ СИЛУ И ХАРАКТЕР СВЯЗИ МЕЖДУ

Пора-

ность

зобом

(V y )

d x = V x M x

d y = V y M y

d x d y

d x 2

d y 2

Σ -1345 ,0

Σ 13996 ,0

Σ 313 , 47

1. Определяем среднее содержание йода в воде (в мг/л).

мг/л

2.Определяем среднюю пораженность зобом в %.

3. Определяем отклонение каждого V x от М x , т.е. d x .

201–138=63; 178–138=40 и т.д.

4. Аналогично определяем отклонение каждого V у от M у, т.е. d у.

0,2–3,8=-3,6; 0,6–38=-3,2 и т.д.

5. Определяем произведения отклонений. Полученное произведение суммируем и получаем.

6. d х возводим в квадрат и результаты суммируем, получаем.

7. Аналогично возводим в квадрат d у, результаты суммируем, получим

8. Наконец, все полученные суммы подставляем в формулу:

Для решения вопроса о достоверности коэффициента корреляции определяют его среднюю ошибку по формуле:

(Если число наблюдений менее 30, тогда в знаменателе n–1).

В нашем примере

Величина коэффициента корреляции считается достоверной, если не менее чем в 3 раза превышает свою среднюю ошибку.

В нашем примере

Таким образом, коэффициент корреляции не достоверен, что вызывает необходимость увеличения числа наблюдений.

Коэффициент корреляции можно определить несколько менее точным, но намного более легким способом ― методом рангов (Спирмена).

Метод Спирмена: P=1-(6∑d 2 /n-(n 2 -1))

составить два ряда из парных сопоставляемых признаков, обозначив первый и второй ряд соответственно х и у. При этом представить первый ряд признака в убывающем или возрастающем порядке, а числовые значения второго ряда расположить напротив тех значений первого ряда, которым они соответствуют

величину признака в каждом из сравниваемых рядов заменить порядковым номером (рангом). Рангами, или номерами, обозначают места показателей (значения) первого и второго рядов. При этом числовым значениям второго признака ранги должны присваиваться в том же порядке, какой был принят при раздаче их величинам первого признака. При одинаковых величинах признака в ряду ранги следует определять как среднее число из суммы порядковых номеров этих величин

определить разность рангов между х и у (d): d = х - у

возвести полученную разность рангов в квадрат (d 2)

получить сумму квадратов разности (Σ d 2) и подставить полученные значения в формулу:

Пример: методом рангов установить направление и силу связи между стажем работы в годах и частотой травм, если получены следующие данные:

Обоснование выбора метода: для решения задачи может быть выбран только метод ранговой корреляции, т.к. первый ряд признака "стаж работы в годах" имеет открытые варианты (стаж работы до 1 года и 7 и более лет), что не позволяет использовать для установления связи между сопоставляемыми признаками более точный метод - метод квадратов.

Решение . Последовательность расчетов изложена в тексте, результаты представлены в табл. 2.

Таблица 2

Стаж работы в годах

Число травм

Порядковые номера (ранги)

Разность рангов

Квадрат разности рангов

d(х-у)

d 2

Каждый из рядов парных признаков обозначить через "х" и через "у" (графы 1-2).

Величину каждого из признаков заменить ранговым (порядковым) номером. Порядок раздачи рангов в ряду "x" следующий: минимальному значению признака (стаж до 1 года) присвоен порядковый номер "1", последующим вариантам этого же ряда признака соответственно в порядке увеличения 2-й, 3-й, 4-й и 5-й порядковые номера - ранги (см. графу 3). Аналогичный порядок соблюдается при раздаче рангов второму признаку "у" (графа 4). В тех случаях, когда встречаются несколько одинаковых по величине вариант (например, в задаче-эталоне это 12 и 12 травм на 100 работающих при стаже 3-4 года и 5-6 лет, порядковый номер обозначить средним числом из суммы их порядковых номеров. Эти данные о числе травм (12 травм) при ранжировании должны занимать 2 и 3 места, таким образом среднее число из них равно (2 + 3)/2 = 2,5. Таким образом, числу травм "12" и "12" (признаку) следует раздать ранговые номера одинаковые - "2,5" (графа 4).

Определить разность рангов d = (х - у) - (графа 5)

Разность рангов возвести в квадрат (d 2) и получить сумму квадратов разности рангов Σ d 2 (графа 6).

Произвести расчет коэффициента ранговой корреляции по формуле:

где n - число сопоставляемых пар вариант в ряду "x" и в ряду "у"

"

Коэффициент корреляции (или линейный коэффициент корреляции) обозначается как «r» (в редких случаях как «ρ») и характеризует линейную корреляцию (то есть взаимосвязь, которая задается некоторым значением и направлением) двух или более переменных. Значение коэффициента лежит между -1 и +1, то есть корреляция бывает как положительной, так и отрицательной. Если коэффициент корреляции равен -1, имеет место идеальная отрицательная корреляция; если коэффициент корреляции равен +1, имеет место идеальная положительная корреляция. В остальных случаях между двумя переменными наблюдается положительная корреляция, отрицательная корреляция или отсутствие корреляции. Коэффициент корреляции можно вычислить вручную, с помощью бесплатных онлайн-калькуляторов или с помощью хорошего графического калькулятора.

Шаги

Вычисление коэффициента корреляции вручную

    Соберите данные. Перед тем как приступить к вычислению коэффициента корреляции, изучите данные пары чисел. Лучше записать их в таблицу, которую можно расположить вертикально или горизонтально. Каждую строку или столбец обозначьте как «х» и «у».

    • Например, даны четыре пары значений (чисел) переменных «х» и «у». Можно создать следующую таблицу:
      • x || y
      • 1 || 1
      • 2 || 3
      • 4 || 5
      • 5 || 7
  1. Вычислите среднее арифметическое «х». Для этого сложите все значения «х», а затем полученный результат разделите на количество значений.

    Найдите среднее арифметическое «у». Для этого выполните аналогичные действия, то есть сложите все значения «у», а затем сумму разделите на количество значений.

    Вычислите стандартное отклонение «х». Вычислив средние значения «х» и «у», найдите стандартные отклонения этих переменных. Стандартное отклонение вычисляется по следующей формуле:

    Вычислите стандартное отклонение «у». Выполните действия, которые описаны в предыдущем шаге. Воспользуйтесь той же формулой, но подставьте в нее значения «у».

    Запишите основную формулу для вычисления коэффициента корреляции. В эту формулу входят средние значения, стандартные отклонения и количество (n) пар чисел обеих переменных. Коэффициент корреляции обозначается как «r» (в редких случаях как «ρ»). В этой статье используется формула для вычисления коэффициента корреляции Пирсона.

    Вы вычислили средние значения и стандартные отклонения обеих переменных, поэтому можно воспользоваться формулой для вычисления коэффициента корреляции. Напомним, что «n» – это количество пар значений обеих переменных. Значение других величин были вычислены ранее.

    • В нашем примере вычисления запишутся так:
    • ρ = (1 n − 1) Σ (x − μ x σ x) ∗ (y − μ y σ y) {\displaystyle \rho =\left({\frac {1}{n-1}}\right)\Sigma \left({\frac {x-\mu _{x}}{\sigma _{x}}}\right)*\left({\frac {y-\mu _{y}}{\sigma _{y}}}\right)}
    • ρ = (1 3) ∗ {\displaystyle \rho =\left({\frac {1}{3}}\right)*} [ (1 − 3 1 , 83) ∗ (1 − 4 2 , 58) + (2 − 3 1 , 83) ∗ (3 − 4 2 , 58) {\displaystyle \left({\frac {1-3}{1,83}}\right)*\left({\frac {1-4}{2,58}}\right)+\left({\frac {2-3}{1,83}}\right)*\left({\frac {3-4}{2,58}}\right)}
      + (4 − 3 1 , 83) ∗ (5 − 4 2 , 58) + (5 − 3 1 , 83) ∗ (7 − 4 2 , 58) {\displaystyle +\left({\frac {4-3}{1,83}}\right)*\left({\frac {5-4}{2,58}}\right)+\left({\frac {5-3}{1,83}}\right)*\left({\frac {7-4}{2,58}}\right)} ]
    • ρ = (1 3) ∗ (6 + 1 + 1 + 6 4 , 721) {\displaystyle \rho =\left({\frac {1}{3}}\right)*\left({\frac {6+1+1+6}{4,721}}\right)}
    • ρ = (1 3) ∗ 2 , 965 {\displaystyle \rho =\left({\frac {1}{3}}\right)*2,965}
    • ρ = (2 , 965 3) {\displaystyle \rho =\left({\frac {2,965}{3}}\right)}
    • ρ = 0 , 988 {\displaystyle \rho =0,988}
  2. Проанализируйте полученный результат. В нашем примере коэффициент корреляции равен 0,988. Это значение некоторым образом характеризует данный набор пар чисел. Обратите внимание на знак и величину значения.

    • Так как значение коэффициента корреляции положительно, между переменными «х» и «у» имеет место положительная корреляция. То есть при увеличении значения «х», значение «у» тоже увеличивается.
    • Так как значение коэффициента корреляции очень близко к +1, значения переменных «х» и «у» сильно взаимосвязаны. Если нанести точки на координатную плоскость, они расположатся близко к некоторой прямой.

    Использование онлайн-калькуляторов для вычисления коэффициента корреляции

    1. В интернете найдите калькулятор для вычисления коэффициента корреляции. Этот коэффициент довольно часто вычисляется в статистике. Если пар чисел много, вычислить коэффициент корреляции вручную практически невозможно. Поэтому существуют онлайн-калькуляторы для вычисления коэффициента корреляции. В поисковике введите «коэффициент корреляции калькулятор» (без кавычек).

      Введите данные. Ознакомьтесь с инструкциями на сайте, чтобы правильно ввести данные (пары чисел). Крайне важно вводить соответствующие пары чисел; в противном случае вы получите неверный результат. Помните, что на разных веб-сайтах различные форматы ввода данных.

      • Например, на сайте http://ncalculators.com/statistics/correlation-coefficient-calculator.htm значения переменных «х» и «у» вводятся в двух горизонтальных строках. Значения разделяются запятыми. То есть в нашем примере значения «х» вводятся так: 1,2,4,5, а значения «у» так: 1,3,5,7.
      • На другом сайте, http://www.alcula.com/calculators/statistics/correlation-coefficient/ , данные вводятся по вертикали; в этом случае не перепутайте соответствующие пары чисел.
    2. Вычислите коэффициент корреляции. Введя данные, просто нажмите на кнопку «Calculate», «Вычислить» или аналогичную, чтобы получить результат.

    Использование графического калькулятора

    1. Введите данные. Возьмите графический калькулятор, перейдите в режим статистических вычислений и выберите команду «Edit» (Редактировать).

      • На разных калькуляторах нужно нажимать различные клавиши. В этой статье рассматривается калькулятор Texas Instruments TI-86.
      • Чтобы перейти в режим статистических вычислений, нажмите – Stat (над клавишей «+»). Затем нажмите F2 – Edit (Редактировать).
    2. Удалите предыдущие сохраненные данные. В большинстве калькуляторов введенные статистические данные хранятся до тех пор, пока вы не сотрете их. Чтобы не спутать старые данные с новыми, сначала удалите любую сохраненную информацию.

      • С помощью клавиш со стрелками переместите курсор и выделите заголовок «xStat». Затем нажмите Clear (Очистить) и Enter (Ввести), чтобы удалить все значения, введенные в столбец xStat.
      • С помощью клавиш со стрелками выделите заголовок «yStat». Затем нажмите Clear (Очистить) и Enter (Ввести), чтобы удалить все значения, введенные в столбец уStat.
    3. Введите исходные данные. С помощью клавиш со стрелками переместите курсор в первую ячейку под заголовком «xStat». Введите первое значение и нажмите Enter. В нижней части экрана отобразится «xStat (1) = __», где вместо пробела будет стоять введенное значение. После того как вы нажмете Enter, введенное значение появится в таблице, а курсор переместится на следующую строку; при этом в нижней части экрана отобразится «xStat (2) = __».

      • Введите все значения переменной «х».
      • Введя все значения переменной «х», с помощью клавиш со стрелками перейдите в столбец yStat и введите значения переменной «у».
      • После ввода всех пар чисел нажмите Exit (Выйти), чтобы очистить экран и выйти из режима статистических вычислений.

Коэффициент корреляции - это степень связи между двумя переменными. Его расчет дает представление о том, есть ли зависимость между двумя массивами данных. В отличие от регрессии, корреляция не позволяет предсказывать значения величин. Однако расчет коэффициента является важным этапом предварительного статистического анализа. Например, мы установили, что коэффициент корреляции между уровнем прямых иностранных инвестиций и темпом роста ВВП является высоким. Это дает нам представление о том, что для обеспечения благосостояния нужно создать благоприятный климат именно для зарубежных предпринимателей. Не такой уж и очевидный вывод на первый взгляд!

Корреляция и причинность

Пожалуй, нет ни одной сферы статистики, которая бы так прочно вошла в нашу жизнь. Коэффициент корреляции используется во всех областях общественных знаний. Основная его опасность заключается в том, что зачастую его высокими значениями спекулируют для того, чтобы убедить людей и заставить их поверить в какие-то выводы. Однако на самом деле сильная корреляция отнюдь не свидетельствует о причинно-следственной зависимости между величинами.

Коэффициент корреляции: формула Пирсона и Спирмана

Существует несколько основных показателей, которые характеризуют связь между двумя переменными. Исторически первым является коэффициент линейной корреляции Пирсона. Его проходят еще в школе. Он был разработан К. Пирсоном и Дж. Юлом на основе работ Фр. Гальтона. Этот коэффициент позволяет увидеть взаимосвязь между рациональными числами, которые изменяются рационально. Он всегда больше -1 и меньше 1. Отрицательно число свидетельствует об обратно пропорциональной зависимости. Если коэффициент равен нулю, то связи между переменными нет. Равен положительному числу - имеет место прямо пропорциональная зависимость между исследуемыми величинами. Коэффициент ранговой корреляции Спирмана позволяет упростить расчеты за счет построения иерархии значений переменных.

Отношения между переменными

Корреляция помогает найти ответ на два вопроса. Во-первых, является ли связь между переменными положительной или отрицательной. Во-вторых, насколько сильна зависимость. Корреляционный анализ является мощным инструментом, с помощью которого можно получить эту важную информацию. Легко увидеть, что семейные доходы и расходы падают и растут пропорционально. Такая связь считается положительной. Напротив, при росте цены на товар, спрос на него падает. Такую связь называют отрицательной. Значения коэффициента корреляции находятся в пределах между -1 и 1. Нуль означает, что зависимости между исследуемыми величинами нет. Чем ближе полученный показатель к крайним значениям, тем сильнее связь (отрицательная или положительная). Об отсутствии зависимости свидетельствует коэффициент от -0,1 до 0,1. Нужно понимать, что такое значение свидетельствует только об отсутствии линейной связи.

Особенности применения

Использование обоих показателей сопряжено с определенными допущениями. Во-первых, наличие сильной связи, не обуславливает того факта, что одна величина определяет другую. Вполне может существовать третья величина, которая определяет каждую из них. Во-вторых, высокий коэффициент корреляции Пирсона не свидетельствует о причинно-следственной связи между исследуемыми переменными. В-третьих, он показывает исключительно линейную зависимость. Корреляция может использоваться для оценки значимых количественных данных (например, атмосферного давления, температуры воздуха), а не таких категорий, как пол или любимый цвет.

Множественный коэффициент корреляции

Пирсон и Спирман исследовали связь между двумя переменными. Но как действовать в том случае, если их три или даже больше. Здесь на помощь приходит множественный коэффициент корреляции. Например, на валовый национальный продукт влияют не только прямые иностранные инвестиции, но и монетарная и фискальная политика государства, а также уровень экспорта. Темп роста и объем ВВП - это результат взаимодействия целого ряда факторов. Однако нужно понимать, что модель множественной корреляции основывается на целом ряде упрощений и допущений. Во-первых, исключается мультиколлинеарность между величинами. Во-вторых, связь между зависимой и оказывающими на нее влияние переменными считается линейной.

Области использования корреляционно-регрессионного анализа

Данный метод нахождения взаимосвязи между величинами широко применяется в статистике. К нему чаще всего прибегают в трех основных случаях:

  1. Для тестирования причинно-следственных связей между значениями двух переменных. В результате исследователь надеется обнаружить линейную зависимость и вывести формулу, которая описывает эти отношения между величинами. Единицы их измерения могут быть различными.
  2. Для проверки наличия связи между величинами. В этом случае никто не определяет, какая переменная является зависимой. Может оказаться, что значение обеих величин обуславливает какой-то другой фактор.
  3. Для вывода уравнения. В этом случае можно просто подставить в него числа и узнать значения неизвестной переменной.

Человек в поисках причинно-следственной связи

Сознание устроено таким образом, что нам обязательно нужно объяснить события, которые происходят вокруг. Человек всегда ищет связь между картиной мира, в котором он живет, и получаемой информацией. Часто мозг создает порядок из хаоса. Он запросто может увидеть причинно-следственную связь там, где ее нет. Ученым приходится специально учиться преодолевать эту тенденцию. Способность оценивать связи между данными объективно необходима в академической карьере.

Предвзятость средств массовой информации

Рассмотрим, как наличие корреляционной связи может быть неправильно истолковано. Группу британских студентов, отличающихся плохим поведением, опросили относительно того, курят ли их родители. Потом тест опубликовали в газете. Результат показал сильную корреляцию между курением родителей и правонарушениями их детей. Профессор, который проводил это исследование, даже предложил поместить на пачки сигарет предупреждение об этом. Однако существует целый ряд проблем с таким выводом. Во-первых, корреляция не показывает, какая из величин является независимой. Поэтому вполне можно предположить, что пагубная привычка родителей вызвана непослушанием детей. Во-вторых, нельзя с уверенностью сказать, что обе проблемы не появились из-за какого-то третьего фактора. Например, низкого дохода семей. Следует отметить эмоциональный аспект первоначальных выводов профессора, который проводил исследование. Он был ярым противником курения. Поэтому нет ничего удивительного в том, что он интерпретировал результаты своего исследования именно так.

Выводы

Неправильное толкование корреляции как причинно-следственной связи между двумя переменными может стать причиной позорных ошибок в исследованиях. Проблема состоит в том, что оно лежит в самой основе человеческого сознания. Многие маркетинговые трюки построены именно на этой особенности. Понимание различия между причинно-следственной связью и корреляцией позволяет рационально анализировать информацию как в повседневной жизни, так и в профессиональной карьере.

Это величина, которая может варьировать в пределах от +1 до -1. В случае полной положительной корреляции этот коэффициент равен плюс 1 (говорят о том, что при увеличении значения одной переменной увеличивается значение другой переменной), а при полной отрицательной - минус 1 (свидетельствуют об обратной связи, т.е. При увеличении значений одной переменной, значения другой уменьшаются).

График зависимости застенчивости и дипресивности. Как видим, точки (испытуемые) расположены не хаотично, а выстраиваются вокруг одной линии, причём, глядя на эту линию можно сказать, что чем выше у человека выражена застенчивость, тем больше депрессивность, т. е. эти явления взаимосвязаны.

Пр2.: График для Застенчивости и Общительности. Мы видим, что с увеличением застенчивости общительность уменьшается. Их коэффициент корреляции - 0,43. Таким образом, коэффициент корреляции больший от 0 до 1 говорит о прямопропорциональной связи (чем больше… тем больше…), а коэффициент от -1 до 0 о обратнопропорциональной (чем больше… тем меньше…)

В случае если коэффициент корреляции равен 0, обе переменные полностью независимы друг от друга.

Корреляционная связь - это связь, где воздействие отдельных факторов проявляется только как тенденция (в среднем) при массовом наблюдении фактических данных. Примерами корреляционной зависимости могут быть зависимости между размерами активов банка и суммой прибыли банка, ростом производительности труда и стажем работы сотрудников.

Используется две системы классификации корреляционных связей по их силе: общая и частная.

Общая классификация корреляционных связей:

1) сильная, или тесная при коэффициенте корреляции r > 0,70;

2) средняя при 0,50 < r < 0,69;

3) умеренная при 0,30 < r < 0,49;

4) слабая при 0,20 < r < 0,29;5) очень слабая при r < 0,19.

Частная классификация корреляционных связей:

1) высокая значимая корреляция при r, соответствующем уровню статистической значимости ρ ≤ 0.01

2) значимая корреляция при r, соответствующем уровню статистической значимости ρ ≤ 0,05;

3) тенденция достоверной связи при r, соответствующем уровню статистической значимости ρ ≤ 0,10;

4) незначимая корреляция при r, не достигающем уровня статистической значимости. Две эти классификации не совпадают.

Первая ориентирована только на величину коэффициента корреляции, а вторая определяет, какого уровня значимости достигает данная величина коэффициента корреляции при данном объеме выборки. Чем больше объем выборки, тем меньшей величины коэффициента корреляции оказывается достаточно, чтобы корреляция была признана достоверной. В результате при малом объеме выборки может оказаться так, что сильная корреляция окажется недостоверной. В то же время при больших объемах выборки даже слабая корреляция может оказаться достоверной. Обычно принято ориентироваться на вторую классификацию, поскольку она учитывает объем выборки. Вместе с тем, необходимо помнить, что сильная, или высокая, корреляция - это корреляция с коэффициентом r > 0,70, а не просто корреляция высокого уровня значимости.


В следующей таблице написаны названия коэффициентов корреляции для различных типов шкал.

Дихотомическая шкала (1/0) Ранговая (порядковая) шкала
Дихотомическая шкала (1/0) Коэфициент ассоциации Пирсона, коэффициент четырехклеточной сопряженности Пирсона. Бисериальная корреляция
Ранговая (порядковая) шкала Рангово-бисериальная корреляция. Ранговый коэффициент корреляции Спирмена или Кендалла.
Интервальная и абсолютная шкала Бисериальная корреляция Значения интервальной шкалы переводятся в ранги и используется ранговый коэффициент Коэффициент корреляции Пирсона (коэффициент линейной корреляции)

При r = 0 линейная корреляционная связь отсутствует. При этом групповые средние переменных совпадают с их общи-ми средними, а линии регрессии параллельны осям координат.

Равенство r = 0 говорит лишь об отсутствии линейной корреляционной зависимости (некоррелирован-ности переменных), но не вообще об отсутствии корреляционной, а тем более, статистической зависимости.

Иногда вывод об отсутствии корреляции важнее наличия сильной корреляции. Нулевая корреляция двух переменных может свидетельствовать о том, что никакого влияния одной переменной на другую не существует, при условии, что мы доверяем результатам измерений.

В SPSS: 11.3.2 Коэффициенты корреляции

До сих пор мы выясняли лишь сам факт существования статистической зависимости между двумя признаками. Далее мы попробуем выяснить, какие заключения можно сделать о силе или слабости этой зависимости, а также о ее виде и направленности. Критерии количественной оценки зависимости между переменными называются коэффициентами корреляции или мерами связанности. Две переменные коррелируют между собой положительно, если между ними существует прямое, однонаправленное соотношение. При однонаправленном соотношении малые значения одной переменной соответствуют малым значениям другой переменной, большие значения — большим. Две переменные коррелируют между собой отрицательно, если между ними существует обратное, разнонаправленное соотношение. При разнонаправленном соотношении малые значения одной переменной соответствуют большим значениям другой переменной и наоборот. Значения коэффициентов корреляции всегда лежат в диапазоне от -1 до +1.

В качестве коэффициента корреляции между переменными, принадлежащими порядковой шкале применяется коэффициент Спирмена , а для переменных, принадлежащих к интервальной шкале — коэффициент корреляции Пирсона (момент произведений). При этом следует учесть, что каждую дихотомическую переменную, то есть переменную, принадлежащую к номинальной шкале и имеющую две категории, можно рассматривать как порядковую.

Для начала мы проверим существует ли корреляция между переменными sex и psyche из файла studium.sav. При этом мы учтем, что дихотомическую переменную sex можно считать порядковой.

Выполните следующие действия:

· Выберите в меню команды Analyze (Анализ) Descriptive Statistics (Дескриптивные статистики) Crosstabs. (Таблицы сопряженности)

· Перенесите переменную sex в список строк, а переменную psyche — в список столбцов.

· Щелкните на кнопке Statistics... (Статистика). В диалоге Crosstabs: Statistics установите флажок Correlations (Корреляции). Подтвердите выбор кнопкой Continue.

· В диалоге Crosstabs откажитесь от вывода таблиц, установив флажок Supress tables (Подавлять таблицы). Щелкните на кнопке ОК.

Поделитесь с друзьями или сохраните для себя:

Загрузка...